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The Lagally theorem is used to obtain an expression for the Bjerknes force acting on
a bubble in terms of the singularities of the fluid velocity potential. defined within the
bubble by analytic continuation. This expression is applied to transient cavity collapse
in the neighbourhood of boundaries, allowing analytical estimates to be made of the
Kelvin impulse of the cavity. The known result for collapse near a horizontal rigid
boundary is recovered, and the Kelvin impulse of a cavity collapsing in the
neighbourhood of a submerged and partially submerged sphere is estimated. A
numerical method is developed to deal with more general body shapes and in
particular, bodies of revolution. Noting that the direction of the impulse at the end of
the collapse phase generally indicates the direction of the liquid jet that may form, the
behaviour of transient cavities in these geometries is predicted. In these examples the
concept of a zone of attraction is introduced. This is a region around the body, within
which the Kelvin impulse at the time of collapse, and consequent jet formation, is
expected to be directed towards the body. Outside this zone the converse is true.

1. Introduction
Upon the collapse of a transient cavity in the neighbourhood of boundaries, a liquid

jet is often observed to form and completely penetrate the bubble (Benjamin & Ellis
1966; Lauterborn & Bolle 1975; Vogel, Lauterborn & Timm 1989). Computations of
the bubble shape are in agreement with these observations (Plesset & Chapman 1971;
Guerri, Lucca & Prosperetti 1981; Blake, Taib & Doherty 1986). Significant attention
has been paid to these jets as their impact against solid boundaries is a cause of
cavitation damage. It is also evident that the pressure gradient induced by a
gravitational field is a cause of jet formation such as, for example, occurs in the case
of the bubble formed by an underwater explosion.

The concept of the Kelvin impulse was invoked by Benjamin & Ellis (1966) in order
to explain the deformation from a spherical shape of a translating cavity, the formation
of jets and the ultimate fate of the bubble as a vortex system. Subsequent to this, an
approximate analytical expression for the Kelvin impulse of a cavity collapsing in an
axisymmetric geometry near to a horizontal rigid boundary and in a uniform
gravitational field has been derived by Blake et al. (1986). The evidence of the
numerical computations presented in that paper indicates that the direction of the jet
and the direction of the Kelvin impulse at the end of the bubble life are closely
correlated. An analogous investigation of cavity collapse near a horizontal free surface
(Blake, Taib & Doherty 1987) orovided further evidence of this correlation.
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In this paper. the theory of approximating the Kelvin impulse of a transient cavity
is generalized to formally allow consideration of collapse in an arbitrary flow
geometry. This theory utilizes the generalization of the Lagally theorem for muitipoles
and deformable bodies, given by Landweber & Miloh (1980). It is shown that the
hydrodynamic force acting on a transient cavity is identically equal to zero, and this
allows an expression to be obtained for the Bjerknes force exerted upon the bubble by
the boundaries of the flow domain in terms of the strength of singularities of the
velocity potential within the bubble. defined there by analytic continuation. Integration
of this expression over the approximate lifetime of the bubble yields an estimate of the
Kelvin impulse.

Particular geometries are then considered. In the first instance, the result of Blake
et al. (1986) for the final Kelvin impulse of a cavity collapsing in the neighbourhood
of a rigid boundary is recovered. Collapse near a stationary rigid sphere is a further
example considered and one that may be treated exactly in the approximate theory.
This latter example introduces the concept of a zone of attrac'ion. Motion near a sphere
in a uniform gravitational field is considered and the final Kelvin impulse estimated.
A surface surrounding the sphere may be defined by the condition that the line through
the point at which inception of the cavity occurs, in the direction of the final Kelvin
impulse. is tangential to the sphere. On the basis of the proposition that the directions
of the final Kelvin impulse and jet arc closely correlated, this surface bounds a region
within which, if motion occurs inside it. the jet will be directed towards the sphere upon
collapse, and outside it the converse is true, hence the terminology, zone of attraction.
By utilizing a linearized boundary condition at a horizontal free surface, the analysis
is extended to consider a sphere submerged to its centreplane. and the zone of
attraction is computed. In the penultimate section of the paper. a numerical method is
described that allows consideration of transient cavity collapse in the neighbourhood
of more general body shapes. and the particular class of shapes considered here is that
of bodies of revolution. When the body is slender the results assume practical relevance
in the context of the problem of underwater explosion bubble collapse near marine
vessels.

2. The rate of change of the Kelvin impulse and the Lagally theorem
The fluid is considered ideal and the flow irrotational so a velocity potential. 0, may

be introduced that satisfies Laplace's equation in the flow domain £2. The boundary of
0 is K2 and ýQ =_ S U Z where S is the surface of the bubble and Z consists of all other
surfaces that bound 9. The unit normal to ('Q is denoted by n and considered to be
directed exterior to 02.

The pressure within the bubble is assumed to be constant throughout the motion and
equal to p. The hydrostatic pressure at the point of inception of the cavity is p,. The
lengthscale is Rm, of the order of the maximum bubble radius, and the timescale is
Rm(p/Ap)1. with p the fluid density and Ap = p, -p, the pressure scale. The
gravitational field is uniform and given by g = -ge. with e. an element of the set of
Cartesian basis vectors. In non-dimensional variables, the Bernoulli equation evaluated
at S is

+- -+ IV0 + (32:- I = 0. (2.1)

where , = (pgR,./1Ap)1. (2.2)

is the buoyancy parameter.
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The Kelvin .e of a cavity is (scaled with respect to R3,,(pAp):)

1= O ndS. (2.3)

and I changes in response to the action of forces according to

d/dt = F. (2.4)

Integrating. 1) =0) + R F(t') dt'. (2.5)

and A0) = 0, so having deterT."r Fthe impulse may be computed. It should be noted
that Fis not the hydrodynam ,e' I force acting on the bubble due to the pressure
exerted by the fluid), which wn, be u..•ioted by F,.

The rate of change of the Kelvii. ipalse is given by (Blake & Cerone 1982)

dl/dt = F = F' + F. (2.6)
with F-=j {~IV.1! n-¶. WvdS. (2.7)

and P = 42 Ve.. (2.8)

P is the buoyancy force and F` the Bjerknes force exerted by lhe boundary.
Equivalently. the integration in (2.7) may be considered as over the butL, Ic surface S.
in which case (Blake & Cerone 1982)

FP = 2n - VO dS. (2.9)

It is worthwhile to consider the relationship between the above expressions and the
Lagally theorem. The hydrodynamic force on a bubble is

F pndS. (2.10)

and provided p is uniform over S. this is identically equal to zero! In the case of the
transient cavity considered here. this is indeed the case as the pres'sure within the
bubble is constant throughout the motion. In view of this, it is a routine matter to
derive (2.6). The hydrodynamic force on a body. whose boundary is S, is given in
general terms by (Newman 1977)

Fh -d ,lV¢'l -- (-n VIIj dS+,$ Ve. (2.11)

If this force is identically equal to zero then (2.6). (2.8) and (2.9) follow immediately.
The Lagally theorem follows when the first two terms on the right-hand side of(2. I1)

are evaluated in terms of the singularities, within the volume bounded by S. of the
potential defined there by analytic continuation. Landweber & Miloh (1980) have
generalized the Lagally theorem to treat deformable bodies, and those for which the
velocity potential within the body has multipole singularities. In the course of their
derivation. Landweber & Miloh (1980) establish the following expression:

1{VO'zn -+ VOds = 4n V P, D•(V§')... (2.12)
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In deriving this result, the potential defined within the volume bounded by S is singular
at points whose position vectors are r, (x,.y,. :J. In the neighbourhood of the
singularity, the potential is written as

0= ,J+ (,'. (2.13)

where 0' is regular. and 0 is of the form

0=-PIDq,(I/R), D . R = (x-.x,)+(y-.Y,)'+(:-:,) :,(2.14)

where the summation convention has been used over q, the order of the multipole, and
for each q the sum is taken over all z., fi, y such that a + /1+ y = q. In (2.12), E,, denotes
summation over all singularities within S. and (), denotes evaluation at the singularity
s. r (x,),:) is the position vector of an arbitrary point in space. In comparing (2.12)
with equation (24) of Landweber & Miloh (1980). note that the normal used in that
paper is directed oppositely from that used here.

Using (2.12) in (2.9) gives the Bjerknes force as

P = -4n V Pq Dq)(VY) (2.15)

which is the required expression in terms of the strength of the singularities of 0 within
S, and derivatives of the regular part of the fluid velocity at these singularities.

3. General theory for estimating the Kelvin impulse of a transient cavity

In what follows the small parameter c. is defined to be 0(1/6), where f is a typical
distance from the bubble centroid to 2E.7 and the geometry of Z is considered to be time
independent. It is further assumed that the buoyancy parameter 8 is O(c). The radial
coordinate of the bubble surface is of the form

, I

a(O, 0, t) = R(t) + z, ,,,().(cos ) cos (m + ,,. m(t)), (3.1)
I--I rn--O

where Y," is an associated Legendre function (Gradshteyn & Ryzhik 1979). This paper
is concerned with the lowest-order perturbations to the infinite-fluid behaviour caused
by buoyancy and nearby boundaries. The potential in the neighbourhood of the bubble
may be written in the form of (2.13). Transient cavity motion in an infinite fluid has
been considered by Rayleigh ( 1917). with the potential due to such motion represented
by a time-dependent source located at the centre of the bubble. This behaviour is
perturbed by buoyancy and nearby boundaries, so the leading-order contribution to 0
is a source term, and as a matter of notation let PI, in (2.14) be written as m/4n. with
m the source strength and IP0J is 0(l). The perturbing influence of both buoyancy and
nearby boundaries has been considered by Herring (1950). The bubble is perturbed
from a spherical shape throughout its growth and collapse and the lowest-order
correction to a spherical form is merely a translation of the sphere as a whole. In view
of this analysis, it is inferred that the leading contribution to JPI' is O(62), with the other
Pq of higher order. The term 0' in (2.13) is non-zero owing to the presence of the
boundary Z. This contribution to the potential may be considered as due to images.
exterior to 9, of the singularities within the bubble, and is 0(c). Furthermore. the terms
a.. in (3. 1), that are non-zero owing to departures from the spherical shape, are O(c').
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These mathematical features are characteristic of the perturbing influence of both
nearby boundaries and buoyancy.

Applying (2.15). the Bjerknes force may he written as

F = -mVWY(r,.)+O(:i.), (3.2)

where r, is the position vector of the bubble ccntroid and it is remarked that the leading
term in this expression is O(cA). The buoyancy force is

P = ln&" RWe. + O(04 ). (3.3)

since the terms al.,, in (3.1) do not contribute in evaluation of the volume.
To proceed further set

/, f g(r. r,( s + O(,3'). 0.4)

where g is a function of r.r,. and s a (s, s......, ). which is a set of time-independent
distance parameters that characterize the geometry of E. Hence

nitFP=•-V glr.,s) +O(•

,-r+ o(,'). (3.5)

where r1, is the position of the bubble centroid at t = 0. Equation (3.5) defines r as a
function of r, and s that is O(,"). Note that r is defined in terms of re, as i, relates to
P, (or dipole) contributions to the potential that arise owing to migration of the bubble.
and since these are O(&-'-') the time variation of r, contributes to F' to 0(4:). As a further
consequence of this, r, may be routinely replaced by r, in (3.2) and (3.4). and this is
done in the examples considered later in this paper.

Application of the kinematic boundary condition at the surface of the bubble
determines the source strength II. This condition is that

,'(P dxd- -(3.6)

where (`0/(n is the normal fluid velocity and dx/dt is the velocity of a Lagrangian
surface particle. Using (3.1) to evaluate the right-hand side of (3.6), and (2.13) to
evaluate the left-hand side, yields

In = 4xR'A + O((.2). (3.7)

so F`= nR4 k r+ O(.,4). (3.8)

In order to integrate (3.3) and (3.8) with respect to time to determine an
approximation to the impulse, an expression is required for R(t). This is obtained from
the Bernoulli equation. evaluated at the bubble surface (equation (2.1)). Substituting
into this expression using (2.13) and (3.7) yields

RR+ R--(r, s) + I + O(•o") = 0. (3.9)
(If

Utilizing (3.4). and noting that any time dependence of r, contributes to ýA'fYl to 0(0').
(3.9) becomes

RIA+ + pR(RR+2R.2)+ I = 0. (3.10)
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with the error of O(i:). and

,u = gr,.s) (3.11

is O(.1. Equivalently. (3.10) could be obtained via an energy argument. Note that to
this order of computation. the equation giving R(t) is independent of d. Multiplying
(3.10) by the integrating factor R" gives

d [I R:' A;( I +R R= 0. (3.12)

At the maximum radius R = I1. = 0. so integration yields
A= ' \(I-R')�RR-"-(I +1#R)A. 0 t<.T.S(3.13)

2l-\! (-RR-1(~ R ! -T<,t< T.

Swith the sign of the square root of A" appropriately chosen according to whether the

bubble is expanding (0 < t < !T) or collapsing (T < t < T). The symmetry of the
motion about the maximum radius which occurs at t = IT is noted, with T the period
of the motion.

To proceed. R(t) is determined implicitly and the Kelvin impulse then evaluated.
Now

I = f t'= f1dR'1R.
= i

(3.14)/3•fo" (1- .,R(+!t'd' ,t<T

_ "I (I-R '• R',( I +- ,.iR') dR' •r<T T,

where, in accord with the order of the approximation. a binomial expansion of
(I +IiR')} has been utilized. Making the transformation 2' = R'" (.x = R'). (3.14) is
written in terms of incomplete (B,(w.:)) and complete (B(w.:)) Beta-functions
(Abramowitz & Stegun 1965):

(I/% 6)[BQ1 (..)+•tB,(l.. )]. 0 < 2 < ,t.
= .(2/% 6 (3.15)-(I/ %)B (. 4 .. :

(1 6)JBý(,.,4) +.ýB,(,,,..1)). •.T <_ t _< T.

At t = T. x = 0. so the period is given by

T= (2/\ 6)[B(AI.)+:,iB{,.).. (3.16)

Using (3.8), the Kelvin impulse caused by Z" is

I = Xrf RI RAdt' = nrf RK RdR'. (3.17)

and using (3.13) and a substitution as above to carry out the integration yields

( 6n/9) r[B.(,(•) -A•tB.,(•)0.0 <t <• T.
0)=(2 % 6x/9) r[B(•, :)!-./td BQ:. =)](.8

{, -\6n/9) r[B,(•,,)- Bj(•..-1)), 1 ,T
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with an error o1 ('l. A similar evaluation yields the impulse due to buoyancy as

(2\ 6I/9),V'[8,("..'.)+•,B,('. )e.. ! < ; <T.

l"(1) ={(4% 6n/9)3"[B(L. D + -, B()!. e(3.19t -(2\ 61t/9)&J"8ý(L.!)+:ý ( .'] : 'T <, t <, T".

with an error oft O(t.).
In order to estimate the period and Kelvin impulse of a transient cavity, the

coefficients p and F must be evaluated. These are purely functions of the geometry of
1 and thus characterize its influence upon the motion of the cavity. Several examples
in the next sections illustrate the approach.

4. Examples treated exactly in the approximate theory
4. I. ('ollapse near i hori:ontal riý,id plane

Consider transient cavity collapse near a horizontal rigid plane at 0= . The regular
potential in the neighbourhood of the bubble, to 00.). is due to an image source of
strength m reflected about the plane. Considering inception of the cavity to occur at
P. =- (0,0. 0).

=y(r) g(r. r,,). (4.1)

with g(r. r,,) = -(00 - )l" (4.2)

From (4.2) F and p are evaluated as

I I
r= -re. = 2Pij. (4.3)

where e, is a unit vector directed away from the boundary. Blake ct al. (1986) did not
consider the correction to the Rayleigh equation for R due to the nearby boundary, so
to recover the result of that paper/p is set equal to zero in (3.18) and (3.19).

Since the Kelvin impulse is the impulse that would have to be applied over the
surface of the bubble in order to generate the observed flow field from rest. there is
some physical basis for supposing that the direction of the jet and the direction of the
Kelvin impulse at the time of collapse are closely correlated. The analytical estimates
of the impulse at the end of the bubble collapse obtained by Blake et al. (1986. 1987)
were found to provide reasonable estimates of the Kelvin impulse of the jet-pierced
bubble, despite the analysis assuming small departures from a spherical shape. This
follows from the speed with which jet formation occurs. Typically. the time over which
this non-spherical collapse occurs is of the order of 2 -3 % of the bubble life. Over some
interval. At. the change in the Kelvin impulse is

Al= J F(0)dt'. (4.4)

so that (AlI l Al sup (Rt)(, (4.5)
it, I ÷At

where sup denotes the supremum value. F is bounded throughout the motion so that.
over a sufficiently small time interval, the magnitude of the impulse change is small.
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The time at which the bubble enters the rapid collapse phase and becomes highly non-
spherical is given with good accuracy by (3.16). and up until this time the Kelvin
impulse can be determined using the results of'§3. Becaus. of the generally short time.
At. over which the collapse occurs, this provides a reliable estimate of the impulse of
the non-spherical collapsed bubble, the change in the impulse brought about by the
deformation from a spherical shape being small, in accord with (4.5).

4.2. ('C/lapse near a stationarv rig'id sphere
Without loss of generality, suppose that the centre of a fixed rigid sphere of radius a
is located at the origin and that inception occurs at f. In this case 0' is given by the
Weiss sphere theorem (see Milne-Thomson 1960)

(n I in j"._o di'
X4it Ir - (1). 0, ~i•)I + 0.0. ") (4.6)

The first term corresponds to a source of' strength am/l- located at - = a and the
second term to a uniform linear distribution of' sinks of density in/a. from : = 0 to

= a"/. This is the image set associated with a source located at: = f and is such that
the boundary condition VO.n = 0 is satisfied at the surface of the sphere. In this
example the geometry of' ' is characterized by s at. From (4.6)

g(r, r, s) = - - (4.7)
'Ir-(OO.&1/')I a ,, I r-(OO,,")I

and r=F 4 e ,., i (4.8)

where the onl. non-zero component of' the Bjerknes force exerted by the sphere is
directed towards the origin, as denoted by use of the radial vector e,.

Since the direction of the Kelvin impulse at the conclusion of the collapse is expected
to be closely correlated with the direction of the jet. the theory developed here may be
used to infer the behaviour of buoyant cavities collapsing in the neighbourhood of a
sphere. The angle, ý,. that the direction of the final impulse makes with the line joining
the point of inception to the centre of the sphere is

ý, = arctan(,,(7T)/I,(T1)). (4.9)

where i,, and i, are the components of the Kelvin impulse in spherical coordinates. The
geometry is shown in figure I. The critical angle. 0. is defined by

= arcsin (a!f). (4.10)

and , = 0, (4.11)

defines a condition such that the direction of the final Kelvin impulse is tangential to
the sphere. Since I(T7) is a function of f and f. (4.11 ) defines a surface surrounding the
sphere and this surface shall be hereafter denoted by .5,. Within this surface the
Bjerknes attraction of the sphere is sufficiently large that the final Kelvin impulse is
directed towards it. It is supposed that the jet formed will be similarly directed. Thus
the terminology :one of attraction is introduced to describe this region of space.
Conversely. outside the surface defined by (4.11). the final Kelvin impulse is directed
away from the sphere.

The example a = 2.0, 4 = 0. 1 is shown in figure 2. Equation (4.11) has been solved
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/ /'." 1(7\

V-

Point of inception

FIGURE 1. The geometry for buoyant cavity motion near a stationary. rigid sphere.

8:8( (

1 -

FIGURE 2. The zone of attraction around a sphere of radius a =2.0.

The buoyancy parameter is .4 = 0. 1.

by the bisection method, with substitution of (4.8) into (3.18) and (3.19) yielding the
appropriate components of the impulse. S. encloses the sphere and as z - - o the
section of this surface in some plane:. = constant tends to x2 + -Y = a2. This is expected
on physical grounds. As - -~ - oo the presence of the sphere is little felt (F, /s --' 0) so the
dominant buoyancy force yields a final Kelvin impulse directed upwards and towards
the sphere, if the point of inception is under it.

In regard to jet formation as a damage-causing mechanism, the zone of attraction

is relevant as it defines a region in which jet impact may occur. However, the part of
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this zone extending to : = - f is of little relevance in this context as a jet forming
towards the sphere. but a long way from it. will cause no damage.

4.3. Collapse near a s.ationar" ./phere. suhmerged to its centreplane at a liee surface

Consider now a sp iere submerged to its centreplane at a horizontal free surface defined
by : = 0. To the accuracy of computation required. the linearized boundary condition
that the potential vanishes on the free surface is applied. For the purpose of calculation
of r. axisymmetry may be exploited and the point of inception considered as

r,, = (a. 0. ). (4.12)

with the centre of the sphere the origin. The distance between the point of inception
and the sphere centre is

= + .- ),, (4.13)

The simplest way to satisfy the boundary condition on : = 0 is to introduce an image
sink of strength m at

r, = (a. 0. - C). (4.14)

which is the reflection of r,, about the plane : = 0. and determine 0 such that
VO.n = 0 on the whole of the sphere surface. From symmetry considerations, it is
evident that the resultant potential will satisfy 0 = 0 on : = 0.

The sphere theorem may be applied to both the source representing the bubble and
its image sink to give

4n Ir --(o. . -'

ant I In di,

i 41r - (a",,,/".O0. -, .•/•)1 4na jr - (i',/lc. 0. -i,/)I" (4.15)

rand p are
r= r, e, + r, e., (4.16)

4a:',,, a4- • r4"" +- a + 2a)((- ., ,

2 1 +,, +_}-~2 ( 1 a'2~ 2  sgn (O).
+. _______________•_ I + (4.18)

I a I -__.,"__

' = 21-- c,' In
2I~ + a;

a / ( + a' + 2a'W-(_ ,L," 11-__+ a"-+ •- ,
( • + • + a ( .• , .) +• In 14 .19 )a " W 'a +" + '

where e, and e. are cylindrical basis vectors.
The zone of attraction is defined by the condition that the line passing through the

point of inception, in the direction of the final Kelvin impulse, is tangential to the
surface of the sphere. The equation of this line is

r' = .,+A(T). :' = .+A1.(T•). (4.20)
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(a) Ilb)
15 -1

IW5
5-

Ir

FIGURE 3. The zone of attraction around a sphere submerged to its centrcplane at a free surface. The
,.,ross-section through the axis of symmetry is shown. 4 = 0. 1. The radius of the sphere is (a) a = 1.0.
(h) a = 1.2. ((-) a = 1.4. (d) a = 2.0.

where A is a parameter and the components of the linal Kelvin impulse are functions
of ',) and ý, which define the point of inception. The equation defining the surface of
the sphere is

2 = a'. (4.21)

so that the points at which the line and sphere intersect are given by the solutions of

(f-(7T) + P"( T)) A-' + 2(,)/,( T1) + ý!.( T,)) AI + ( - ) = 0. (4.22)

For the line to be tangential to the sphere this equation has only one solution. so the
equation defining the surface. S,,. that bounds the zone of attraction, is

('..') = (",,,,(Te) + ./( T7))" - ( fI(Tr) + fP(TM)) (p -,a
2) = 0. (4.23)

This function is negative outside the zone of attraction and positive inside it. Utilizing
this fact. (4.23) has been here solved using the bisection method. Note also that for the
solution to be physically relevant A must be positive, indicating that the impulse is
directed towards the sphere.

Examples are shown for 4 = 0.1 and various values of a in figure 3. The section
through S, in the axis of symmetry is shown for a = 1.0 (figure 3a). a = 1.2 (figure 3h).
a = 1.4 (figure 3c) and a = 2.0 (figure 3d). Consider first a = 1.0. The striking feature
is that the zone of attraction consists of two distinct regions. This may be explained by
considering the forces acting on the bubble. In close proximity to the sphere its
Bjerknes attraction is dominant causing the jet to be directed towards it, noting that
the effect of the free surface is to cause jet formation downwards. As the point of
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inception moves downwards. the Bjerknes force exerted by the sphere falls, and the
effect of the free surface becomes dominant and the linal Kelvin impulse is directed
away from the sphere. At greater depths the free surface and Bjerknes force exerted by
the sphere are little felt, and buoyancy causes jet formation upwards and towards the
sphere. As : -- :c the section of S,, in the plane = constant tends to that of the
sphere in the plane : = 0.

A further significant feature is that the bottom section of the zone exhibits a branch
that tends outwards and is asymptotic to the plane defined by

282 [B(4.,i)+ .L3, B)+ A)] = 0. (4.24)

The significance of this plane is that in the absence of the sphere. it defines that depth
of inception at which the final vertical component of the Kelvin impulse is zero in the
approximate theory. In this case, for &) sufficiently large. just below the surface defined
by (4.24) there is a small upwards component of the impulse that combines with the
small component parallel to the free surface and due to the presence of the sphere. in
order that the final impulse is directed towards the sphere. Note also that the part of
S. near to the sphere is only calculated to some close point, as the theory is not
applicable in the very close neighbourhood of its surface.

The changing structure of the zone of attraction as a increases is interesting and the
sequence shown in figure 3 illustrates this. For a = 1.2 the larger sphere causes a greater
Bjerknes force so that part of the zone of attraction immediately below the sphere
extends to a greater depth. Figure 3(c) (a = 1.4) illustrates the merging of the upper
and lower portions of the zone of attraction. In this case the sphere is sufficiently large
that, near to the :-axis at least, there is no region where the repulsion of the free surface
is dominant. The example of a = 2.0 (figure 3d) shows that for a sphere reasonably
larger than the bubble, the free surface is significant only at the edges of the sphere.

5. The numerical method
To exploit the full power of the theory developed here for estimating the Kelvin

impulse of a transient cavity, it is necessary to investigate numerical methodologies for
dealing with complicated flow field geometries. In order to evaluate the approximation
to the Kelvin impulse. suppose that the regular part of the potential in the
neighbourhood of the bubble centroid is considered as due to a distribution of sources
of surface density ma', over E. Then

0S'(r) = -•-g(r, r., s) (5.1)

with g(r, r, s) = r(q, r,. s) dS(q). (5.2)
Jr Ir-q(

Hence r= -4 ff(q, ,,ro s) (r,, - q) dS(q), (5.3)

and f f rr(q' r,.s) sdS(q)• (5.4)• J• Iro-qI

Note that a' depends upon the position on Z (the vector q), the vector s that
characterizes the geometry of E, and the point of inception r0 .
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Writing
" '• = + 0(r). (5.5)
4t Ir - r,,

and restricting attention to cases where Y is rigid, the boundary condition

V,(p).n(p) = O. (5.6)

satisfied for all pe Z. determines ,aiq. r, s). Using (5.5) in (5.6), the following integral
equation is obtained for n-:

I (p--r,,).n(p) I (5.7)
oip.r..s) = 2n L -=p-q:1

2n jp-r' 2ip-qp

A particular difficulty with this equation is the singularity in the integrand at q =p;
however, this can be removed (Landweber & Shahshahan 1992) by noting that

j(P - q)'- mq) dS(q) = 2n. (5.8)

Then (5.7) may be written as

I (p- r.,). nip)
alp, to, 5) = 4R LP - r.,,p

4I f{oj(q, rs)(p-q).n(p)- nip. ros)(q-p).n(q)}dS(q). (5.9)

Equation (5.9) is a Fredholm integral equation of the second kind and provided the
process converges, may be solved by iteration as follows:

= I (p-r 0 ).n(p) (5.10)
41c Ip-r,,j"

(a")(p. r., s) - rr.O(p, s)

+ I f (IT -1)(q, ro. s)(p-q).n(p)--r(n-)(p, ros)(q-p).n(q))d$(q), (5.11)Tit .r (p-qlJ3

where the superscript (n) denotes the approximation obtained by performing n
iterations of (5.10) and (5.11). The particular numerical details in carrying out this
iteration may vary depending upon the particular geometry.

To illustrate one approach, the specific example where £Z is a body of revolution
about the x-axis will be considered in detail. The flow domain is infinite and the
position of the body fixed. The surface of the body is given in parametric form as a
function of 6 and 0 as

p = (X(f), r(g) sin 0, T(g cos 0). (5.12)

where 0 is measured from the vertical. The variable f is the arclength along the curve
that generates the body. The radius of the body, r, may be equivalently considered as
a function of X. in which case it is evident that

f +rix(X'))IdX', (5.13)
Jo
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I

FIGURE 4. The geometry of a body of revolution.

the subscript X denoting differentiation. The geometry is shown in figure 4 and as a

consequence of the parameterization with respect to •.

+ = I. (5.14)
Axisymmetry may be exploited here in the evaluation of r and /I. so inception is

considered to occur at
r = = (c, 0. (a). (5.15)

The unit normal to Z' exterior to the flow domain is given by
n = (T,, - .X, sin 0. - Xcos 0). (5.16)

and the surface area element is
dS = rdfd. (5.17)

Using (5.12) and (5.15)-(5.17) in (5.9) yields

I ,OX cos((19)+, o (X(-)-,)-T( OA I C " d
=+ - +- I dff Id0'TT4I ((X(g) - .2 +r..- -2o40(g) cos(O)+r-)) 4(0) + TI

X [fr(g', 0') 1(X(f) - X(g')) r,(4) - A,( 4 ro) + A'.(f) T(f') cos (!o- W'Y'

- o0(, 9) {(X(9') - x()) Tr(') - X4(•') r(f ') + X( ') r(f) cos (0- (Y') l/

[(X(g) - X(4'))2 +72(f) + r"(f') - 2T() r(g') cos (0- # )J'. (5.18)
Symmetry about the plane * = 0 is exploited in order to reduce the interval of 0'

integration to [0. in. The interval [•mn, .maI is partitioned into n, segments by the
sequence {.,. ,. } Similarly, [0.nJ is partitioned into n,, segments by the
sequence 109,.0....... 0, ,}. Notice that .I = foon. ro,+1 =-2. Ema 01 = 0 and 19 =i.
The following quantities are also defined:

1 i=1,2 ."v (5.19)
0 1+,1 =,÷,-o,. 1= 1.2j..j

This division defines a mesh over [ ,.]xJ x [0. ir] which consists of it, n, rectangular
elements. Element iQj has vertices (f,, 01) .1 0 1,,,.O.,). (6,. (),).

The iteration of (5.18) following (5. 10) and (5.11) is carried out at a set of n, n, nodes
defined by

01+0.+ 1-9,+1, #j+ -2140+,), i = 1.2'.... j = 1..2..... i,,. (5.20)

In order to perform the integration over element i~j in (5.18). the source density fr is
assumed constant and equal to ff,-, its value at , 09+). A product Gauss rule is
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employed with an even number of abscissae, in ordcr that no Gaussian point coincides
with a node point. In order to evaluate r. X'. T, and .V, at the Gaussian points, a cubic
spline is used to approximate r(,) and X(•) and constrained to pass through the values
of these functions at ,:i 1.2..... i+ :. Evaluating (5.18) utilizing these rep-
resentations yields the equation

(T ,r + GiAjrT1-) (5.21)
i fri A*/' f k.

Ac-tII-I

with

G~ I =it, IV', ,(.,..,,

(X(. ,-) - X( A.. ,)) ,( -.V,() .) r(, T ) + X r(4.,)cos(li, +( - I ).i,)]

[(X'(.,) - "V.A, ) +r(:) , A.,)-c 2i.E,11 ,(, jo(i ~ ) ir(~ _..j.,)COS(1ý-,,+(- I~ .. ]

1` .. 
t82, ., ,,, 

CY

(f '• V it IA.i, It' .illT("t.,

T -I i-I I-I ,-I i.-I

[(M G, j•.) X(f Ilk.) 1(A.,: - k '•.,•r•.,)A- .,)~ c.•;c~(/i("A t. 191t.•)

[(X(6+.)-- A ( A.,))" (. + )- r(. 1.",)cos(fl +; + ( -- I ) #T.z ,,)]
k '. 0) + T )T(kJ)OS(1j,+(

(5.22)

In this expression. n•. and nt,, respectively denote the number of Gaussian points used
to carry out the integration over C' and 0'. wk. G and iv;,. denote the weights and fi and
O, the abscissae for integration over the element k. L. % is the Kronecker delta, as is

8i•
To test and illustrate the numerical method, consider the oblate spheroid given by

revolution of the curve
V2 +r (5.23)

about the x-axis. with q I. The case i/ = I is a sphere and comparison with the exact
solution presented in the previous section allows the numerical scheme to be validated.
In order to partition the interval [f.,.,,4.j. points are chosen as

X,=/sin(i,•). r; = nWcos(t•). 1 (5.24)
in= -t+(i- I)irn,/, i = 1.2.n.+i.J

A cubic spline is fitted to these points using the technique of Kucera (1993) that yields
the parameterization with respect to the exact arclength L A particular benefit of
utilizing (5.24) to partition [ffm,,. ,,mA is that, in the case where the body is slender.
smaller elements are chosen near the ends where the curvature is high. In this example

4(J+i = 40 is a constant.
The performance of the numerical method in the case of a sphere of radius I is

illustrated by figure 5(a. b). Figure 5(a) shows the relative error in r,. the non-zero
component of r directed towards the centre of the sphere. and figure 5(b) shows the
relative error in p. The variation of the error with -. the distance of the inception point
from the centre of the sphere, is shown for various n, x n,, combinations, in particular
14 x 14. 19 x 19. 24 x 24. 29 x 29 and 34 x 34. In all computations n. = n,,, = 2 and
(5.21) was iterated until the solution had converged in the sixth decimal place. This
required approximately 7 to 15 iterations, the larger number when 4 • i. These graphs
display the convergence of the method as the mesh is refined. Furthermore. they
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FIGURE 5. The relative error in calculation of (a) F, and (b) p for the example of a sphere of radius
i. The variation of this error with f is shown for the mesh sizes: (i) 14 x 14. (ii) 19 x 19, (iii) 24 x 24.
(iv) 29 x 29, (v) 34 x 34.

illustrate the divergence as 1-- !. This corresponds to the point of inception
approaching the sphere surface and in view of this interpretation it is evident that the
numerical calculation should diverge under these circumstances. If calculations were
required to very high accuracy in the event of . z, I. the method could be improved by
noting that in such a case the flow field in the neighbourhood of the bubble source
appears as for a source near a plane boundary, an example for which the solution is
known. Alternatively, a mesh refinement process could be utilized. However. the
validity of the theory is questionable in such a regime so it does not seem appropriate
to invest a great deal of effort in highly accurate calculations there.

The numerical method for calculation of F and # may be used to compute the zone
of attraction around various bodies, just as was done for the example of a sphere. The
zone of attraction around the sphere shown in figure 2 was calculated using the
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(a) (b)
6- .

/, 12 12i

-12 12

FIGURE 6. The zone of attraction around the body of revolution defined by (5.23). 1 = 10. ,1= 0.2.
8 = 0. 1. The cross-sections through the planes (a) x = 0 and (b) v = 0 are shown.

numerical method employing n, = no = 14 and 10 iterations of (5.21). The result was
visually indistinguishable from that computed using the analytical expressions. Since
the smallest value f/a takes is about 2. inspection of figure 5(a. b) reveals that both r,
and u are computed with a relative error of less than 10'. and this has proved to be
entirely sufficient.

As an example relevant to the problem of underwater explosion bubble collapse near
a marine vessel, consider the zone of attraction about the body defined by (5.23) in an
infinite fluid, with a uniform gravitational field acting. The geometry of S., in the
planes x = 0 and ' = 0, is shown in figure 6 for the case I = 10. i1 = 0.2 and 8 = 0.1.
In this example n, - 19. and n, = 14 with ten iterations of (5.21) carried out. As for
collapse near a sphere, as : --o the section of S. in the plane: = constant tends to
the section of the body in the plane z = 0.

In concluding this section, it is noted that the CPU time required to compute an
approximation to the Kelvin impulse using the technique described here is less than the
time taken to perform one time iteration of a boundary integral calculation of the
whole flow field (see for example Harris 1992). This provides an illustration of the
power of this theory. An estimate of the important parameter of the direction of jet
formation upon transient cavity collapse may be made with considerable economy in
some rather complex but practically relevant geometries.

6. Conclusions

In this paper. an expression has been given that relates the components of the
Bjerknes force acting on a bubble to the singularities of the fluid velocity potential
within the bubble, defined there. by analytic continuation. Application of this
expression to transient cavities allows a general theory to be developed for estimating
the Kelvin impulse during collapse in a flow field of general geometry, assuming that
perturbations from spherical shape are small. Since the large deformation from a
spherical shape brought about by jet formation occurs quickly. the estimates obtained
assuming small departures from a spherical shape are expected to well approximate the
impulse of the cavity after jet formation has occurred. Using this theory, the result of
Blake et al. (1986) for the impulse of a cavity collapsing near a plane rigid boundary
has been recovered, and the effort required in carrying out the analysis is significantly
less than for the original approach.



92 J. P. Best and J. R. Blake

The power of the general theory has been illustrated by consideration of the further
examples of transient cavity collapse near a sphere. both in an infinite fluid and
partially submerged at a horizontal free surface. Furthermore. a numerical im-
plementation of the method has been illustrated that allows complex flow field
geometries to be considered. Since the direction of jet formation upon the collapse of
a transient cavity appears to be correlated with the direction of the Kelvin impulse, the
analytical and numerical estimates obtained for the impulse may be used to predict the
direction of jet formation. In this context the concept of a zone of attraction
surrounding an isolated body has been introduced. If inception of a cavity occurs in
this region of the flow domain, the final Kelvin impulse (and presumably the jet) will
be directed towards the body. The bounding surface of this region may be calculated
using the estimates of the final Kelvin impulse computed in this paper.

Significant assumptions have been made in developing the theory of this paper. as
stated above. However, the evidence obtained to date, particularly from numerical
simulations. indicates that the results derived here provide a reliable indicator of jetting
behaviour upon the collapse of transient cavities. The numerical simulations of Blake
et aL ( 1986. 1987) indicate well the qualitative correlation between the directions of the
Kelvin impulse at collapse and the jet. These results further indicate that analytical
approximations derived assuming that c is small still provide reasonable predictions of
jetting behaviour when inception of a transient cavity occurs at approximately one
maximum bubble radius from a rigid boundary or, in the notation of this paper, when
(. is 0(1). As a further comment, cavity collapse near a compliant boundary has been
considered briefly by Blake (1988), and the analytical estimate of the final Kelvin
impulse provides predictions of jetting behaviour that are in accord with the scarce
experimental data available.

In order to determine fully the realms of applicability of the theory developed here.
further experimental and numerical work is required. Both are currently proceeding.
especially addressing cavity collapse in the neighbourhood of the non-trivial geometries
considered here.

We would like to thank an anonymous referee whose constructive comments have
contributed to a substantially improved final manuscript.
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